OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Otternick Pond, Hudson,** the program coordinators have made the following observations and recommendations.

Thank you for your continued hard work sampling the pond this year! Your monitoring group sampled the deep spot **four** times this year and has done so for the past few years! As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the good work!

Exotic Aquatic Plant Update

Unfortunately, due to lack of adequate state funding for exotic aquatic plant control, DES was unable to provide a matching grant to assist your lake association for fanwort control in **2008**. We strongly encourage you to apply for **2009** funds and continue your hard work as weed watchers this summer.

FIGURE INTERPRETATION

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae are typically microscopic plants that are naturally occurring in lake ecosystems and contain chlorophyll-a. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. **The** median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *decreased* from **May** to **June**, *increased* from **June** to **July**, and then *decreased* from **July** to **September**.

The historical data (the bottom graph) show that the **2007** chlorophyll-a mean is *slightly greater than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix F.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *improved* since **2005**.

After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

The current year data (the top graph) show that the non-viewscope inlake transparency *increased* from **May** to **June**, *decreased* from **June** to **July**, *decreased* slightly more from **July** to **August**, and then increased from **August** to **September**.

It is important to note that as the chlorophyll concentration **decreased** from **May** to **June**, the transparency **increased**. We typically expect this **inverse** relationship in lakes. As the amount of algal cells in the water **increases**, the depth to which one can see into the water column typically **decreases**, and vice-versa.

The historical data (the bottom graph) show that the **2007** mean non-viewscope transparency is **slightly less than** the state median and is **approximately equal to** the similar lake median. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on the **May** sampling event. The transparency was **not** measured with the viewscope on the **June**, **July**, **August**, or **September** sampling events. As discussed previously, a comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, visual inspection of the historical data trend line (the bottom graph) shows an *increasing* trend for in-lake non-viewscope transparency, meaning that the transparency has *improved* since monitoring began in **2005**. Specifically, the transparency has *remained relatively stable ranging between 1.5 and 2.75 meters* since monitoring began in **2005**.

Again, please keep in mind that this trend is based on only *three* years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake/pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased* from **May** to **June**, and then *remained stable* from **July** through **September**.

The *elevated* epilimnetic phosphorus concentration measured on the **June** sampling event may be a result of phosphorus-enriched stormwater runoff that flowed into the surface layer of the pond. Weather records show that approximately **0.5 inches** of rain fall was measured **24 hours** prior to sampling.

The historical data show that the **2007** mean epilimnetic phosphorus concentration is *greater than* the state and similar lake medians. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *increased slightly* from May to June, *increased greatly* from June through August, and then decreased from August to September.

Overall, visual inspection of the historical data trend line for the epilimnion shows a *decreasing* phosphorus trend. Specifically, the mean annual epilimnetic phosphorus concentration has *improved* since monitoring began in **2005**.

Overall, visual inspection of the historical data trend line for the hypolimnion shows a **stable** phosphorus trend since monitoring began. Specifically the mean annual concentration has **remained approximately the same** since monitoring began in **2005**.

As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the pond. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample.

The dominant phytoplankton species observed in the May sample were *Ceratium* (Dinoflagellates), *Chrysosphaerella* (Golden-Browns), and *Mallomonas* (Golden-Browns).

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **6.94** in the hypolimnion to **7.22** in the epilimnion, which means that the water is *slightly basic*.

It is important to point out that the hypolimnetic (lower layer) pH is typically lower than in the epilimnion (upper layer). This increase in acidity near the pond bottom is due to the decomposition of organic matter and the release of acidic by-products into the water column.

The water flowing into Otternick Pond via Glover Inlet and Benson Inlet had unusually high mean pH values of 9.12 and 7.68. This basic water may account for the high epilimnetic pH measured in the 2007 sampling events. High pH values in NH are rare due to the abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates. We recommend continued monitoring of tributaries to track pH fluctuations.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **36.7 mg/L**, which is **much greater than** the state median. In addition, this indicates that the pond is **not vulnerable** to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **38.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **255.40 uMhos/cm**, which is *much greater than* the state median.

The conductivity continued to remain *much greater than* the state median in the pond and tributaries this year. Typically, elevated conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff, which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and rain event sampling along the tributaries with *elevated* conductivity so that we can determine what may be causing the increases.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries with *elevated* conductivity to help identify the sources of conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at www.des.nh.gov/wmb/vlap/2004/documents/Appendix_D.pdf or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. The most commonly used de-icing material in New Hampshire is salt (sodium chloride).

Therefore, we recommend that the **epilimnion** and the **tributaries** be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord will be able to conduct chloride analyses, free of charge, beginning in 2008. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* (25.0 ug/L) in Benson Inlet this year. This station has had a history of *elevated* and *fluctuating* phosphorus concentrations. We recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary so that we can determine what may be causing the elevated concentrations.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature

profile(s) collected during **2007**. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at all deep spot depths sampled in the pond on the **May** sampling event. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two thermal layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action.

The dissolved oxygen concentration was greater than **100 percent** saturation at **2.0** meters at the deep spot on the **May** sampling event. Wave action from wind can dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the dissolved oxygen in the water column, since oxygen is a byproduct of photosynthesis. Considering that the depth to which sunlight could penetrate into the water column was approximately **2.4** meters on this sampling event, as shown by the Secchi disk transparency depth, the oxygen supersaturation at **2.0 meters** could be attributed to an abundance of algae at this depth.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The tributary and deep spot turbidity was *relatively low* this year, which is good news.

However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the pond.

For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at

http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage may be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

Table 14: Current Year Biological and Chemical Raw Data
Table 14 in Appendix B lists the most current sampling year results.
Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to

identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did a **very good** job when collecting samples this year! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify a few aspects of sample collection that your group could improve upon, as follows:

➤ Sample bottles (chlorophyll): The chlorophyll-a sample for the August and September sampling events was not collected in the appropriate bottle. Specifically, the chlorophyll sample should be collected in the big brown light-proof bottle to limit the algae's ability to photosynthesize and produce more chlorophyll during the time period after sample collection and prior to analysis. Therefore, the August sample was rejected for analysis.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/factsheets/ard/ard-32.htm.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975.

Best Management Practices for Well Drilling Operations, DES fact sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm.

Biodegradable Soaps and Water Quality, DES fact sheet BB-54, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-54.htm.

Canada Geese Facts and Management Options, DES fact sheet BB-53, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-1.htm.

Freshwater Jellyfish In New Hampshire, DES fact sheet WD-BB-5, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-51/htm.

Impacts of Development Upon Stormwater Runoff, DES fact sheet WD-WQE-7, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-7.htm.

IPM: An Alternative to Pesticides, DES fact sheet WD-SP-3, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-3.htm.

Iron Bacteria in Surface Water, DES fact sheet WD-BB-18, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-18.htm.

Lake Foam, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-5.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-9.htm.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-17.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-2.htm.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-4.htm.

Sand Dumping - Beach Construction, DES fact sheet WD-BB-15, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-15.htm.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-4.htm.

Soil Erosion and Sediment Control on Construction Sites, DES fact sheet WQE-6, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-6.htm.

Swimmers Itch, DES fact sheet WD-BB-2, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-2.htm.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-4.htm.

Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-16.htm.